GMAP-210 Recruits γ-Tubulin Complexes to cis-Golgi Membranes and Is Required for Golgi Ribbon Formation

نویسندگان

  • Rosa M. Rı́os
  • Arancha Sanchı́s
  • Anne Marie Tassin
  • Concepción Fedriani
  • Michel Bornens
چکیده

Mammalian cells concentrate Golgi membranes around the centrosome in a microtubule-dependent manner. The mechanisms involved in generating a single Golgi ribbon in the periphery of the centrosome remain unknown. Here we show that GMAP-210, a cis-Golgi microtubule binding protein, recruits gamma-tubulin-containing complexes to Golgi membranes even in conditions where microtubule polymerization is prevented and independently of Golgi apparatus localization within the cell. Under overexpression conditions, very short microtubules, or tubulin oligomers, are stabilized on Golgi membranes. GMAP-210 depletion by RNA interference results in extensive fragmentation of the Golgi apparatus, supporting a role for GMAP-210 in Golgi ribbon formation. Targeting of GMAP-210 or its C terminus to mitochondria induces the recruitment of gamma-tubulin to their surface and redistribution of mitochondria to a pericentrosomal location. All our experiments suggest that GMAP-210 displays microtubule anchoring and membrane fusion activities, thus contributing to the assembly and maintenance of the Golgi ribbon around the centrosome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positioning the Golgi Apparatus

Ríos et al. (2004) report in this issue that the Golgi protein GMAP-210 is sufficient to confer pericentrosomal positioning and recruits gamma-tubulin and associated microtubule-nucleating ring complex proteins to Golgi membranes. The results raise the possibility that short microtubules emanate from the Golgi to mediate its organization and positioning.

متن کامل

Two splice variants of Golgi-microtubule-associated protein of 210 kDa (GMAP-210) differ in their binding to the cis-Golgi network.

GMAP-210 (Golgi-microtubule-associated protein of 210 kDa) is a peripheral Golgi protein that interacts with the minus end of microtubules through its C-terminus and with cis-Golgi network membranes through its N-terminus; it participates in the maintenance of the structural integrity of the Golgi apparatus [Infante, Ramos-Morales, Fedriani, Bornens and Rios (1999) J. Cell Biol. 145, 83--98]. W...

متن کامل

The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi

Rud3p is a coiled-coil protein of the yeast cis-Golgi. We find that Rud3p is localized to the Golgi via a COOH-terminal domain that is distantly related to the GRIP domain that recruits several coiled-coil proteins to the trans-Golgi by binding the small Arf-like GTPase Arl1p. In contrast, Rud3p binds to the GTPase Arf1p via this COOH-terminal "GRIP-related Arf-binding" (GRAB) domain. Deletion ...

متن کامل

GMAP-210, A Cis-Golgi Network-associated Protein, Is a Minus End Microtubule-binding Protein

We report that a peripheral Golgi protein with a molecular mass of 210 kD localized at the cis-Golgi network (Rios, R.M., A.M. Tassin, C. Celati, C. Antony, M.C. Boissier, J.C. Homberg, and M. Bornens. 1994. J. Cell Biol. 125:997-1013) is a microtubule-binding protein that associates in situ with a subpopulation of stable microtubules. Interaction of this protein, now called GMAP-210, for Golgi...

متن کامل

The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway

Golgins are coiled-coil proteins that participate in membrane-tethering events at the Golgi complex. Golgin-mediated tethering is thought to be important for vesicular trafficking and Golgi organization. However, the degree to which individual golgins contribute to these processes is poorly defined, and it has been proposed that golgins act in a largely redundant manner. Previous studies on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2004